RESINIFY - TECHNICAL DATA SHEET

Product Name: FlexX 95A **RT Code:** RT-FX95A **Category:** Engineering Resin – High-Durability Elastomer (95A Hardness)

1. Product Description

FlexX 95A is a high-performance engineering elastomer designed to replicate the mechanical behavior of tough industrial TPU. With a Shore hardness of 95A, it offers excellent tear resistance, outstanding durability, and superior mechanical strength while maintaining controlled flexibility. This material is ideal for functional prototypes and end-use parts that require high fatigue resistance, repeated bending, and long-term mechanical reliability. FlexX 95A sits between flexible elastomers and rigid plastics, delivering the ideal balance for demanding engineering applications.

2. Key Features & Benefits

- True TPU-like strength and elasticity with Shore 95A hardness
- Exceptional tear and abrasion resistance
- High fatigue resistance under cyclic loading
- Excellent mechanical strength for functional parts
- Smooth surface finish with reliable layer adhesion
- Suitable for production-grade elastomer components

3. Mechanical & Thermal Properties

Property	Value
Shore Hardness	95A
Tensile Strength	12–18 MPa
Elongation at Break	40–80%

Property	Value
Tear Strength	Very High (30–45 kN/m equivalent)
Tensile Modulus	High for elastomer class
Impact Resistance	Very High
Heat Deflection Temp	55–65°C
Density	1.10–1.20 g/cm ³
Viscosity	900-1300 cP

Note: Values may vary depending on post-cure conditions and printer type. Flexural properties are not applicable for semi-flexible materials.

4. Recommended 3D Printing Parameters

Parameter	Setting
Printer Type	LCD/mSLA/DLP
Wavelength	385–405 nm
Layer Thickness	50–100 μm
Normal Exposure	3.0-4.0 sec
Bottom Layers	6–10
Bottom Exposure	50-70 sec
Lift Speed	Slow–Medium

Parameter	Setting
Rest Time	Recommended for stable printing

Note: Due to its toughness and high viscosity, slower lift speeds and reinforced supports are recommended to ensure successful printing.

5. Post-Processing

- 1. Wash: Wash gently in IPA for 2–3 minutes. Do NOT over-wash to avoid material stiffening.
- 2. **Dry**: Dry thoroughly with compressed air.
- 3. Cure: UV post-cure for 15–25 minutes.
 - For maximum toughness, a heat-assisted cure at 50–60°C is recommended.
 - Avoid over-curing to maintain optimal elasticity.

6. Applications

- Industrial-grade gaskets, seals, and high-durability flex hinges
- Shock-absorbing components and impact pads
- Snap-fit joints requiring repeated cycling
- Footwear components, grips, and robotics parts
- Drone vibration isolation components
- End-use elastomer products demanding mechanical reliability

7. Storage & Handling

- Store in a tightly sealed container between 10–25°C, away from UV exposure.
- Mix gently before use.
- Shelf Life: 12 months from the date of manufacture when stored properly.

8. Compliance

RoHS

REACH

- - Mechanical properties tested in accordance with ASTM D412.

This document is subject to change. For the latest version, please contact Resinify Technology LLC.

RESINIFY – Innovating Additive Manufacturing Materials